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Topics review paper

@ Introduction
o Brief historical overview
o Observational motivation
@ Observations

o Impulsively excited standing waves (brief, discount — Terradas
& Arregui 2017)

o Decayless waves

e Energy estimates

@ Models

o (RMHD) Alfvén wave heating models

o (KHI/Uni) turbulence models

e Phase mixing models

Conclusions & Critical assessment
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Introduction of review

Elected not to include explicitly in this talk

@ Brief historical overview

o Heating with Alfvén waves (Hollweg, ...)
e Heating with resonant absorption (Poedts, Goossens, De
Groof)
o Chromospheric heating with slow shocks (Carlsson, ...)
@ Observational motivation (1999, 2007)
Standing kink waves (Aschwanden, Nakariakov)
Lower atmospheric wave motion? (Kukhianidze, De Pontieu)
CoMP waves (Tomczyk)
Decayless waves (Wang, Anfinogentov, Nistico)
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Energy flux of 11.7 & 3.8kW /m?
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Energy flux in lower atmosphere

Moreels et al. (2015b), Grant et al. (2015)

Energy in slow waves:

1 —
Fsiow = Efﬂo,iw'zr,iZEVT,i

v, is internal tube speed, =; is longitudinal displacement amplitude

Plosma Density Kinetie Temperature Total Energy Flux
T T T

T J[
i 1
H 10000|
20007 €
S0 00 o 2000 3 w0 o0 o mo0 S
Hefant above Photosphere (km) Hetgnt obove Photosphere (km) z
100F 4
I I
S0 w0 im0 a0 S0 w0 o zo00 0 200 400 690 800 100
Helght above Protosphere (km) Heignt obove Phctosphere (km) Height (k)

m Van Doorsselaere Wave heating 14 October 2019 5/23



Observations
ooe

Energy flux in lower atmosphere

Keys et al. (2018): body and surface slow modes in pores.
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Decayless transverse waves

Plenty of decayless transverse waves in the solar corona
(Tomczyk et al. (2007), Tomczyk & Mclntosh (2009), Wang et al. (2012),
Nistico et al. (2013), Anfinogentov et al. (2013), Anfinogentov et al. (2015))
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Introduction

Decayless transverse waves

Critical assessment

Conclusions

Decayless waves appear as propagating in CoMP (Tomczyk &
Mclntosh 2009), but standing in AIA (Anfinogentov et al. 2015).
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Decayless transverse waves

Duckenfield et al. (2018): Detection of overtone in decayless
waves.
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Suggests/confirms that decayless waves are standing.
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Decayless transverse waves

De Moortel et al. (2014), Liu et al. (2014): Decayless waves lead
to generation of loop top turbulence
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Observational evidence for locations of heating.
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Decayless transverse waves

Decayless waves also present in coronal plumes
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Thurgood et al. (2014)
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Introduction

Decayless transverse waves

ting models

Critical assessment

Morton et al. (2015, 2016): measure energy flux in plumes with

CoMP
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Heating by Alfvén waves

Van Ballegooijen et al. (2011), Verdini et al. (2012), Suzuki &
Inutsuka (2005): 1D or R MHD, turbulence from
counterpropagating Alfvén waves
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Heating by Alfvén waves

! Temperature (K) !

@ Moriyasu et al. (2004): Heating
with Alfvén driver of RMS
amplitude of 2km/s

@ Antolin et al. (2008, 2010):
Dependence of T on driver
amplitude, development of coronal
rain

@ Buchlin et al. (2007): Extend
model to RMHD with 2D shell
model
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Heating by Alfvén waves

Arber et al. (2016), Soler et al. (2019): Extension of these models
to multi-fluid
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Heating by Alfvén waves

Shoda et al. (2019): Extending models of (e.g.) Rappazzo et al
(2008) to compressible MHD
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Ponderomotive force (a.k.a. parametric decay instability) plays key

Wave heating
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Turbulence heating models

Karampelas et al. (2017, 2019), Guo et al. (2019a,b):
Heating by decayless waves through KHI :
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Heating up to few 10°K, easier with multiple strands/modes
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Turbulence heating models

Cargill et al. (2016): Wave heating in wrong location
Karampelas et al. (2018): Heating spread over loop cross-section
due to turbulence
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0000000

Uniturbulence

Magyar et al. (2017, 2019): Simulated driven waves in plumes —
medium becomes turbulent, too.
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Propagating waves (in one direction) form turbulent medium:
uniturbulence (= turbulence from unidirectional waves)

(w+wa)Z] = (w—wa)Z]
What is the heating?
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Phase mixing models

Pagano et al. (2017): Heating with phase mixing, putting high
resistivity
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Phase mixing models
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Whole length of loop is heated
Heating and cooling
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Critical assessment

All models (beyond 1D) do not have enough heating.

De Moortel & Pascoe (2012): forward model propagating kink
modes in bundle of loops

normaolised energy

o] 20 40 60

Only a fraction of kinetic energy is observed in (LOS integrated)
Doppler shift. Observed energy is underestimated.

Van Doorsselaere et al. (2014): Observed energy flux should be

multiplied with filling factor. Lower than thought.
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Structure of review

@ Introduction
o Brief historical overview
o Observational motivation
@ Observations

o Impulsively excited standing waves (brief, discount — Terradas
& Arregui 2017)

o Decayless waves

e Energy estimates

@ Models

o (RMHD) Alfvén wave heating models

o (KHI/Uni) turbulence models

e Phase mixing models

Conclusions & Critical assessment
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