Using CubeSats for Science Missions seen from a physics point of view. What can we do and when?

René Fléron, M.Sc.E. Project Manager DTU Space rwf@space.dtu.dk

Outline

- 1. History (contemporary S/C's) of space science missions
- 2. Three S/C options science-wise for the CubeSats seen from an engineering / physics perspective:
 - Formations / swarms, extending baseline
 - Augmented spacecraft, expendable probes
 - Stand alone deep-space pico/nano S/C
- 3. When can we do it? example: The starshot initiative

The work presented here is based on the Cospar Road map and my presentation at IAA-Cu-17 in Rome:

Small Satellites for Space Science *A COSPAR Roadmap Document*

Will CubeSats introduce a Moore's law to space science missions, René Fléron, IAA-Cu-17, Rome, Italy

Contemporary Spacecrafts

Spacecraft mass

Contemporary Spacecrafts

Mass pr. experiment

Multiple probes – longer baseline

MarCo mission (Mars) 6U

Hera mission (Didymos) 3U

Expendable probes – mission augmentation

Pico / nano deep space S/C

SLS EM-2 (Moon and beyond) 6U and 12U

SkyFire, LunaH-Map, IceCube, CuSP, EQUULEUS, OMOTENASHI, ArgoMoon and more. (13 in total)

Aperture vs distance, example

Hubble Space Telescope

Mass: 11110 kg Aperture: 2.4 m versus

Dove 1 (Planet)

Mass: 5.8 kg Aperture: 0.09 m

Aperture vs distance, example

Going closer – the aperture problem

$$P_{Rx} = P_{Tx}G_{Tx}G_{Rx}\left(\frac{\lambda}{4\pi d}\right)^2$$
 versus $\phi_{min} = \frac{1.22\lambda}{D}$

When can we do it? Moore's law

Р

Original Moore's law:

 $P = Log_2(n_{i.f.})$

*n*_{*i.f.*}: number of components per integrated function

Modern Moore's law:

 $P_{t} = P_{0} 2^{t/n}$

Electronics, April 19, 1965

When can we do it? Moore's law for space.

Moore's law:

$$P_t = P_0 2^{t/n}$$

n: Time in months for number of components per area to **double**.

Space version of Moore's law:

n: Time in months for mass of a given spacecraft type to **half.**

When can we do it?

When can we do it?

EO from LEO

IAA-CU-17

Small Satellites for Space Science *A COSPAR Roadmap Document*

Assume same laser system all along.

Suggestions

Suited for

Deep

Three posibilities with CubeSats and other small satellites exists:

- 1. To fly as mission enhancing or enabling spacecraft in concert with a larger mother ship and possibly several other smaller satellites/CubeSats.
- 2. To fly in large constellations in order to increase base-lines beyond what a traditional monolithic large spacecraft is capable of.
- To fly faster than traditional larger spacecrafts because the overall mass is lower – and therefore be able to go closer faster (in case of distant objects).

Suited for LEO	Suited for cis-lunar	Space (trans Lunar)
(v)	V	V
	V	(v)

Suggestions

Mission augmentation
Swarm missions
Fly faster and go closer

