Magnetic Reconnection at the Earth's Magnetosphere

Walter D. Gonzalez
Joint Laboratory China-Brazil for Space Weather

ISSI-BEIJING FORUM

September 2019

DIFFUSION REGION OF RECONNECTION

Karimabadi et al. 2013

MAGNETOPAUSE HALL RECONNECTION

Mozer et al. 2002

MMS-SMART:

A multi-s/c mission

to study magnetic recomection

MMS
 SATELLITES

Plasma Inflow

Burch et al. 2016 ${ }^{\text {Magnetopause }}$

DIFFUSION REGION AND SEPARATRICES AT THE RECONNECTING MAGNETOSPHERIC TAIL

c

Magnetopause reconnection scales

From simulations:

3D SIMULATION OF RECONNECTION AT THE MAGNETOPAUSE

Daughton et al, 2015

CROSS-SCALE RECONNECTION

SAME (MAGNETOSPHERIC RECONNECTION) MISSION

Mission Profile

Satellite profile：

1）Mother－satellite＋12 small satellite。
2）Three set of small satellite．
3）Each set includes four small satellite，with separation at the scales of $1-5 \mathrm{~km}$（electron scale）， 100 km （ion scale），and 10000 km （ Macro－scale）， with the option to adjust the macro－scale separation to even larger scale．

Flow Velocities (2): Component Reconnection

- "Flow Reversal Events" are purely a component reconnection phenomenon
- Observed for southward IMF when the IMF B_{y} is "Large"

Fuselier et al. 2010

Souza et al. 2017

Color coded (a) magnetopause current density magnitude, (b) magnetic shear angle, and (c) asymmetric reconnection outflow velocity along the BATS-R-US dayside magnetopause boundary, as seen in the $\mathrm{yz}_{\mathrm{GSM}}$ plane. Blank regions denote magnetopause locations where $\mathrm{x}_{G S M}<0$. Each black circle obeys a local maximum condition, as determined by the Lindeberg[1993, 1998] ridge-detection algorithm (see text for details). The collection of these points forms the X line location for this configuration. The IMF and Earth's dipole tilt conditions used as input for this BATS-R-US run are (Bx,By,Bz) = (5.0,5.0,2.886) nT and $\psi=0^{\circ}$.

OPEN RESEARCH ISSUES IN MAGNETOSPHERIC RECONNECTION ASSOCIATED WITH THIS FORUM

1. Magnetopause Currents for High and Low Solar Wind Plasma Beta values
2. Role of boundary conditions for reconnection associated with large-scale solar wind-magnetosheath and ionospheric electric fields
3. Role of interplanetary structures in magnetopause reconnection as a function of solar cycle phase
4. Magnetospheric reconnection during extreme geomagnetic activity

Current closure for moderate southward IMF (LFM global MHD code, Lopez 2016)

Current closure for large southward IMF with magnetosheath/Bow shock currents closing as Region-1 current through the ionosphere (LFM global MHD code, Lopez 2016)

Lopez et al. 2011

Global Boundary Conditions for Magnetopause Reconnection

Gonzalez et al. 2016

SOLAR CYCLE

Cycle 23 Sunspot Number Prediction (January 2005)

Corotating High-speed Streams

Individual streams recur at ~ 27 day solar rotation period;

Present throughout solar cycle, but most prominent during declining phase/ minimum.

Interplanetary Coronal Mass
Ejections (ICMEs)

Transient: ICME reaches Earth ~ < 1-4+ days after CME at the Sun (~300->2000 km/s);

Shock formed ahead of fast ICMEs; Sheath of compressed solar wind between shock, ICME;

STEREO A (right) and B (left) coronagraph images at about ± 120 degrees

July 23, 2012.

NOAA/Space Weather Prediction Center

Inner heliospheric model of a propagating CME for July 23, 2012. Solar wind density (left) and speed (right).

Solar wind Magnetosphere lonosphere Link Explorer (SMILE)

Provide a global view of magnetosphere
Key Scientific Questions

- What are the fundamental modes of the dayside solar wind/magnetosphere interaction?
- What defines the substorm cycle?
- How do CME-driven storms arise, and what is their relationship to substorms?

