Antarctic Glacier and Sea Ice Observation With a Chinese Cube-Satellite

Shufan Wu*, Tiancheng Zhao§, Yuan Gao*, Xiao Cheng§,

*Shanghai Engineering Centre for Microsatellites
Haikou Road 99, Shanghai, P.R. China
shufan.wu@mail.sim.ac.cn

§College of Global Change and Earth System Science
Beijing Normal University, Beijing, China

Contents

- SEC M Introduction
- STU-2 Mission & Satellite
- Camera Design
- In-Orbit Data Analysis & Results
- Lessons Learned
- Summary
SECM: Shanghai Engi Centre for MicroSat

SECM was founded on Sep.15, 2003
- Founded by Chinese Academy of Sciences (CAS) and Shanghai City Government
- To build a technical platform and innovation base for micro/small satellites

- Located in Pudong of Shanghai
 - Offices: ~15,000 m^2
 - AIT area: ~12,000 m^2

- Able to manufacture 20+ satellites simultaneously

SECM: Mission Accomplished

Over past 12+ years, SECM has launched into orbit 15+ micro/small/large satellites (2-1800kg), accumulated 40+ orbit-year of satellite operation.

Commnication, Micro/Nano Satellite, Navigation & Science

2003 · CX-1(01)
2008 · CX-1(02)
2008 · BX-1
2011 · CX-1(03)
2014 · CX-1(04)
2015 · STU-2 (TW-1) 3 CubeSats
2015 · Nav-1
2016 · Nav-2
2016 · DarkEnerge
2016 · Quantum
STU-2 Mission Requirements

- Monitoring sea ice status in polar regions
- Gaining the maritime traffic information via AIS receiver
- Monitor civil aircraft traffic information via ADS-B receiver
- New technology demonstration & validation of Micro-propulsion, dual-band GPS-BD receiver, and Gamalink
- Demonstration of autonomous rendezvous (RVD) flight

STU-2 Mission Configuration

- 3 Cube Satellites to carry different payloads
- 2 Ground Stations (UHF band) in Shanghai and Nanjing of China
- 1 Data Receiving Station (S-band) in Shanghai
- Orbit: SSO, 480km, 8:00am
- Launch: Sept 25th 2015 Jiuquan, China
Satellites Configuration

- **STU-2A: 3U CubeSat**
 - Gamalink
 - Camera
 - GPS/BD Receiver
 - Micropropulsion
 - S-band transmitter

- **STU-2B: 2U CubeSat**
 - Gamalink
 - AIS receiver
 - GPS/BD receiver

- **STU-2C: 2U CubeSat**
 - ADS-B Receiver
 - GPS/BD receiver

Project Schedule

- **Phase A/B**
 1. Mission Analysis & Design
 2. System design
 3. SRR, PDR

- **Phase B/C**
 1. Procurements
 2. Subsystem testing
 3. Ground electrical testing
 4.

- **AIT & Launch**
 1. AIT
 2. Testing
 3. Launch campaign
 4. LEOP & operation

Earth Observation and Marine/Air Traffic Monitoring with a Multiple CubeSat Constellation

S. Wu, 67th IAC, Sept 28th 2016, Guadalajara, Mexico
STU-2A CubeSat

Body mounting solar panel, 3-axis attitude stabilization and control based on momentum wheels and star tracker, UHF TT&C, and S-band transmitter.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>Dimension [mm]</td>
<td>340.5x100x100</td>
</tr>
<tr>
<td>ADCS</td>
<td>Attitude Knowledge [°]</td>
<td>±1° (3σ)</td>
</tr>
<tr>
<td></td>
<td>Pointing Accuracy [°]</td>
<td>±0.1° (3σ)</td>
</tr>
<tr>
<td></td>
<td>Pointing Stability [°/s]</td>
<td>0.1°/s</td>
</tr>
<tr>
<td>Thermal</td>
<td>Internal temperature [°C]</td>
<td>-10°C ~ 35°C</td>
</tr>
<tr>
<td>EPS</td>
<td>Bus voltage [V]</td>
<td>13.2V ~ 16.8V</td>
</tr>
<tr>
<td></td>
<td>Battery properties</td>
<td>2.6 Ah, 1 Year</td>
</tr>
<tr>
<td>TT&C</td>
<td>Frequency [MHz]</td>
<td>1449.433 ~ 438 MHz</td>
</tr>
<tr>
<td></td>
<td>Modulation [kbps]</td>
<td>2-FSK</td>
</tr>
<tr>
<td></td>
<td>Uplink</td>
<td>4.8 kbps</td>
</tr>
<tr>
<td></td>
<td>Downlink</td>
<td>4.8 kbps</td>
</tr>
<tr>
<td>S-band transmitter</td>
<td>Date rate [kbps]</td>
<td>125 kbps</td>
</tr>
<tr>
<td></td>
<td>Frequency [MHz]</td>
<td>2.425 GHz</td>
</tr>
<tr>
<td></td>
<td>Modulation [kbps]</td>
<td>QPSK</td>
</tr>
<tr>
<td></td>
<td>BER</td>
<td>< 10^-6</td>
</tr>
<tr>
<td>OBC</td>
<td>Process capacity [Mbps]</td>
<td>20 Mbps</td>
</tr>
<tr>
<td></td>
<td>Process storage [M, Flash]</td>
<td>RAM > 2 M, Flash > 256 K</td>
</tr>
</tbody>
</table>

STU-2A Cubesat-Payload

Optical Camera
- **Structure**
 - Mass: 466g
 - Dimension: 90 x 90 x 72 mm3
- **Electrics**
 - Power: < 8.2 W (ave), < 8.75 W (peak, < 10 ms)
- **Observation**
 - Resolution: 94.4 m
 - Swatch: 222 x 160 km3

BD/GPS Receiver
- **Structure**
 - Mass: 4g
 - Dimension: 22.4 x 17 x 2.2 mm3
- **Electrics**
 - Power: 0.5 W
- **Position**
 - Horizontal: 93 m
 - Altitude: 217.8 km
 - Velocity: 1 m/s
STU-2A Camera Design

Table 1 Mission Requirements on Camera

<table>
<thead>
<tr>
<th>Imaging function</th>
<th>Swath</th>
<th>>200km@481km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GSD</td>
<td><100m</td>
</tr>
<tr>
<td></td>
<td>spectrum band</td>
<td>0.43-0.67um</td>
</tr>
<tr>
<td></td>
<td>fps(tunable)</td>
<td>1/5 1/10 1/15</td>
</tr>
<tr>
<td></td>
<td>image type</td>
<td>RAW/RGB</td>
</tr>
<tr>
<td></td>
<td>exposure time</td>
<td>manual/auto</td>
</tr>
<tr>
<td></td>
<td>image size</td>
<td>512 x 512, 1024 x 1024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2352 x 1728</td>
</tr>
<tr>
<td></td>
<td>image number one time</td>
<td>manual set</td>
</tr>
</tbody>
</table>

Hardware

<table>
<thead>
<tr>
<th>Dimension</th>
<th><0.72U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power consumption</td>
<td><8W(average)</td>
</tr>
<tr>
<td>Weight</td>
<td><485g</td>
</tr>
<tr>
<td>Mass memory</td>
<td>>4GB</td>
</tr>
</tbody>
</table>

Interface

<table>
<thead>
<tr>
<th>Interface between transmitter</th>
<th>SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface between OBC</td>
<td>I2C</td>
</tr>
</tbody>
</table>

Camera Electronic Design

Detector: CCD vs CMOS APS

Table 3 parameters of the CMOS sensor

<table>
<thead>
<tr>
<th>pixel number</th>
<th>2352 x 1728</th>
</tr>
</thead>
<tbody>
<tr>
<td>pixel size</td>
<td>7.4um x 7.4um</td>
</tr>
<tr>
<td>data rate</td>
<td>160MHz x 2</td>
</tr>
<tr>
<td>Fps</td>
<td>62 fps at full resolution</td>
</tr>
<tr>
<td>dynamic range</td>
<td>57dB</td>
</tr>
<tr>
<td>ADC</td>
<td>8/10bit</td>
</tr>
<tr>
<td>Shutter</td>
<td>global electronic shutter</td>
</tr>
<tr>
<td>power consumption</td>
<td>2.2W(62 fps)</td>
</tr>
<tr>
<td>Power</td>
<td>3.3V</td>
</tr>
</tbody>
</table>

Control Panel: FPGA

- FPGA control panel
- Image buffer
- Image data interface
- Control time sequence interface
- CMOS control time sequence
- CMOS serial time sequence
- Image processing
- Image data output

S. Wu, 67th IAC, Sept 28th 2016, Guadalajara, Mexico
Camera Optics Design

Table 4 Lens Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite altitude</td>
<td>481km</td>
</tr>
<tr>
<td>Pixel size</td>
<td>7.4um</td>
</tr>
<tr>
<td>F</td>
<td>37.8mm</td>
</tr>
<tr>
<td>F</td>
<td>1/5</td>
</tr>
<tr>
<td>GSD</td>
<td>94m</td>
</tr>
<tr>
<td>Swath</td>
<td>221km × 162km</td>
</tr>
<tr>
<td>FOV</td>
<td>26° × 19°</td>
</tr>
</tbody>
</table>

Camera Structure Design

Titanium alloy and hollowing material
In-Orbit Data Analysis

Detumbling Phase

94 minutes after launch, the first received signals showed that the satellite had completed rate damping (three axis angular velocity have been reduce within 0.3º/s) within one orbit period time and entered Sun Pointing Mode automatically.

The in-orbit result was in conformity with simulation.

Nadir Pointing Mode

Three attitude angles were constrained within 1º. The time period is from 08:20 to 08:26, 30th Sep, 2015.
In-Orbit Data Analysis

● Thermal Behavior (STU-2A)

![Thermal Behavior Graph]

S. Wu, 67th IAC, Sept 28th 2016, Guadalajara, Mexico

In-Orbit Results

S. Wu, 67th IAC, Sept 28th 2016, Guadalajara, Mexico
Earth Observation: Nov 2015

Location: North Brasil, crossing region of the Tapajos river joining the Amazon river

Antarctic Observation: Feb 20 2016

STU-2A pictures as placed into Modis250 data background
Comparison of STU-2A with Modis250 image

STU-2A's image has a resolution at 100m, much better than the resolution of 250m of the Modis250 images.

Antarctic Observation: Feb 23 2016

STU-2A pictures as placed into Modis250 data background No. 21, 22, 23, 24
Imagine No 22, Feb 23 2016

S. Wu, 67th IAC, Sept 28th 2016, Guadalajara, Mexico

Imagine No 23, Feb 23 2016

S. Wu, 67th IAC, Sept 28th 2016, Guadalajara, Mexico
Lessons Learned

- Structure design must careful to avoid the interferences between electronic boards and optical structures: components height might be bigger in reality.

- Vibration tests and thermal vacuum tests are essential for the camera development, to avoid potential mechanical interference and electrical short-cut.

- EMC is a critical issue in system design and final testing.

- Redundant key sensors/actuators could greatly improve the reliability, providing more measures to tackle irregular cases.

- The impact of magnetic residual remains to be very critical. It can affect attitude stability.

- Magnetometer should be placed as far as possible from large current devices, e.g. PC-104 socket, batteries, etc.

Summary & Acknowledgement

1. CubeSat is successfully used for polar region observation
2. NanoSat at 2.9kg can perform sensible tasks like glacier operation
3. IOD of a few new technology/products: BD/GPS receiver, Cold-gas micro-propulsion module from NanoSpace, …
Thanks!

Prof Dr Shufan Wu
Chinese Academy of Science (CAS)
Shanghai Engineering Centre for Microsatellite
Email: shufan.wu@mail.sim.ac.cn
Tel: 021-50735022, 15800537342